
Proceedings of the FOSS/GRASS Users Conference 2004 - Bangkok, Thailand, 12-14 September 2004

Introducing the Linear Reference System in GRASS

Radim Blazek

ITC-irst, Via Sommarive 18, Trento, Italy, tel. +39 0461 314 520, e-mail blazek@itc.it

1 Introduction

The Linear Reference System (LRS) is a system where features (points or segments) are localized by
a measure along a linear element.

The LRS is suitable for management of data related to linear features like roads, railways and
rivers. It is particularly important for network registers (e.g. roads) and traffic related studies (e.g.
traffic accident studies).

The article describes the first implementation of the LRS in GRASS. The data model and the new
modules v.lrs.create, v.lrs.segment, v.lrs.where, v.lrs.stationing are discussed. These modules can
be used to:

1. Generate the LRS from input linear layer and milestones

2. Georeference points and segments from the LRS to 2D/3D space

3. Query LRS measure for points in 2D plane.

An example will be given for MITRIS, a large scale traffic safety project described in section 9,
in which thousands of events have been automatically georeferenced via LRS.

2 The LRS

Figure 1: Referencing of point event

The LRS can be used to reference events for any network of linear features, for example roads,
railways, rivers, pipelines, electric and telephone lines, water and sewer networks.



2 The GRASS Server

An event is defined in LRS by a route ID (LID) and a measure. A route is a path on the network,
usually composed from more features in the input map. The LID is stored as an attribute in the table
linked to input network map. An LID can be for example a road number. A measure is a distance
measured along the linear object.

Events can be either points (Figure 1) or lines (Figure 2). For example, a point event could be for
example a traffic accident. A linear event could be the type or quality of road pavement.

Figure 2: Referencing of linear event

The existing GRASS module v.segment provides the functionality similar to LRS. With v.segment
it is possible to create points and segments of given measure. This is not sufficient however, for most
of real world applications, because:

1. The distances measured in digital map are different from distances measured in real world, due
to inaccurately digitized features, projection distortions etc.

2. A physical object (route) could be represented by different features in digital map.

3. The beginning of a physical object often does not correspond to the beginning of the feature in
digital map.

Thus a more complete LRS is needed to deal with real data then the basic v.segment.

3 Changes of physical objects

Physical objects in real world change frequently. This further complicates the implementation of
LRS. Reference systems usually exists also in the form of physical objects (milestones). It would be
very expensive and impractical to change the whole reference system every time a small part of one
route is changed.

In Figure 3 two types of changes are represented. The new version of the object might be either
shorter or longer than the old one.

If the changed part of object is shorter, a step will appear between the 2 adjacent segments. If
we take the first example on the figure 3, the original segment km <0,5> must be divided into two
segments km <0,2> and km <4,5> at the original site 2. Such step will not cause any problems.

The more difficult case is when the new part of an object is longer then it was before, and a way
to describe this new part must be found. One possibility, also used in practice, is to use the last
unchanged milestone as a reference point, and measure the distance from this point in sub-units (for



Radim Blazek 3

Figure 3: Changes of physical objects

example meters for milestones in kilometers). In example B in the figure the segment km <0,3> must
be divided into segments km <0,1+3000> and <2,3>. Notation 1+3000 means the kilometer 1 and
3000 meters, which is the end of the changed part. The milestone between those two segments keeps
two measures, the end of previous segment (1+3000) and the beginning of the next one (2+000). For
example, using this notation, the events with measure 2+500 and 1+1500 can be distinguished.

This approach was also adopted by the LRS described in this article.

4 Implementation of a LRS for GRASS

4.1 Data model

To store a LRS, the proposed implementation in GRASS is using:

1. Regular vector map (LRS map). The LRS map is a new vector map containing linear features.
This map is created from input map. The connected (no gaps) lines of the same route (the same
LID) are joined to one continuous line and this line is oriented in the direction of increasing
milestone values. Join and orientation of routes makes later use of LRS easier and faster.

2. Database table (LRS table). All additional information about LRS is stored in the database
table. Each record in the LRS table represents one reference segment. The structure of the
LRS table is shown in table 1.

4.2 New GRASS modules

Four new GRASS modules were written which can be used to create and use LRS:

1. v.lrs.create - generates new LRS

2. v.lrs.segment - creates events as new features from event records and existing LRS

3. v.lrs.where - queries LRS for given points (2D coordinates)

4. v.lrs.stationing - generate graphical representation of LRS as linear features and labels



4 The GRASS Server

Attribute Type Description
rsid integer reference segment ID, unique in the table
lcat integer category of the line in the LRS map
lid integer route ID (LID)

start_map double precision distance measured along the line in LRS map
from the beginning of the line to the begin-
ning of the segment

end_map double precision distance measured along the line in LRS map
from the beginning of the line to the end of
the segment

start_mp integer milepost assigned to the start of the segment
start_off double precision distance from start_mp to the start of the seg-

ment measured along the physical object
end_mp integer milepost assigned to the end of the segment
end_off double precision distance from end_mp to end of the segment

measured along the physical object

Table 1: LRS table structure

5 Creating the LRS

Figure 4: Creating LRS

The LRS is generated from input vector maps of linear features and reference points. The schema
of the process is in Figure 4. This can be done by new GRASS module v.lrs.create:

Description:
Create Linear reference system

Usage:
v.lrs.create in_lines=name out_lines=name [err=name]

points=name [lfield=value] [pfield=value] lidcol=name
pidcol=name [start_mp=name] [start_off=name] [end_mp=name]



Radim Blazek 5

[end_off=name] rstable=name [thresh=value]

Parameters:
in_lines Input map containing lines

out_lines Output map where oriented lines are written
err Output map of errors

points Input map containing reference points
lfield Line field

default: 1
pfield Point field

default: 1
lidcol Column containing line identifiers for lines
pidcol Column containing line identifiers for points

start_mp Column containing milepost position for
the beginning of next segment.
default: start_mp

start_off Column containing offset from milepost for
the beginning of next segment.
default: start_off

end_mp Column containing milepost position for the end of
previous segment.
default: end_mp

end_off Column containing offset from milepost for the end of
previous segment.
default: end_off

rstable Name of table where the reference system will
be written. (New table is created by this module)

thresh Maximum distance of point to line allowed
default: 1

Figure 5: LRS table

An example of resulting LRS table is on Figure 5.



6 The GRASS Server

6 Creating events

It is possible to create point or linear events using the new module v.lrs.segment:

Description:
Create points/segments from input lines, linear reference system
and positions read from stdin in format:

P <pid> <lid> <milepost>+<offset> [<side offset>]
L <sid> <lid> <milepost>+<offset> <milepost>+<offset> [<side off>]

Usage:
v.lrs.segment input=name output=name [lfield=value] rsdriver=name

rsdatabase=name rstable=name

Parameters:
input Input map containing lines

output Output map where segments will be written
lfield Line field

default: 1
rsdriver Driver name for reference system table

rsdatabase Database name for reference system table
rstable Name of the reference system table

’pid’/’sid’ is category assigned to the output feature. ’lid’ is route ID (LID).

7 Querying the LRS

Querying LRS is the inverse task of creating an event. When we query a LRS, we want to know the
route ID and the LRS measure of a point, given by its coordinates in 2D plane. The new module
v.lrs.where can be used for this purpose:

Description:
Find line id and real km+offset for given points in vector map
using linear reference system

Usage:
v.lrs.where lines=name points=name [lfield=value] [pfield=value]

rstable=name [thresh=value]

Parameters:
lines Input map containing lines
points Input map containing points
lfield Line field

default: 1
pfield Point field

default: 1
rstable Name of the reference system table
thresh Maximum distance to nearest line

default: 1000

8 Visualization of LRS

It is often practical to display LRS on screen or print it on a paper map. For this purpose the new
module v.lrs.stationing was written. It generates labels and linear features which can graphically
represent the LRS.



Radim Blazek 7

Description:
Create stationing from input lines, and linear reference system

Usage:
v.lrs.stationing input=name output=name [lfield=value]
rstable=name [labels=name] [offset=name[,name,...]]
[xoffset=value] [yoffset=value] [reference=name] [font=name]
[size=value] [color=name] [width=value] [hcolor=name]
[hwidth=value] [background=name] [border=name] [opaque=name]

Parameters:
input Input map containing lines
output Output map where stationing will be written
lfield Line field

default: 1
rstable Name of the reference system table
labels Label file
offset PM left, MP right, stationing left, stationing

right offset
default: 50,100,25,25

xoffset Offset label in label x-direction in map units
default: 25

yoffset Offset label in label y-direction in map units
default: 5

reference Reference position
options: center,left,right,upper,lower
default: center

font Font
default: standard

size Label size (in map-units)
options: 1-1000
default: 100

color Text color
options: aqua,black,blue,brown,cyan,gray,green,

grey,indigo,magenta, orange,purple,red,
violet,white,yellow

default: black
width Line width of text (only for p.map output)

options: 1-100
default: 1

hcolor Highlight color for text (only for p.map output)
options: aqua,black,blue,brown,cyan,gray,green,

grey,indigo,magenta, orange,purple,red,
violet,white,yellow

default: none
hwidth Line width of highlight color (only for p.map)

options: 0-100
default: 0

background Background color
options: aqua,black,blue,brown,cyan,gray,green,

grey,indigo,magenta, orange,purple,red,
violet,white,yellow

default: none
border Border color

options: aqua,black,blue,brown,cyan,gray,green,
grey,indigo,magenta, orange,purple,red,
violet,white,yellow

default: none



8 The GRASS Server

opaque Opaque to vector (only relevant if background
color is selected)
options: yes,no
default: yes

19+0

20+0

21+
0

22+0

23+0

24+
0

25+0

26+0

27+0 28+0

29+0

30+0

31+0

32+
0

33+0

34+0

35+0

36+0

37+0

38+0

39+0

40+0

41+0

42+0

43+0

44+0

45+0

46+0

47+0

48+0

49+0

50+0

51+0

52+0

53+0

54+0

55+0

56+0

57+0

58+0

59+0

60+0

61+0

62+0

63+
0

64+0

65+0

66+0

67+0

68
+0

69+0

70+0

71+0

72+0

73+0

74+0
75+0

76+0

61+0

62+0

63+0

64+0

65+0

66+0

67+0

68+
0

69+0

70+0

71+0

72+0

73+0

74
+

0

75+0

76+0

77+0

78+0

79+0

80+0

81+0

82+0

83+0

84+0

85
+0

86+0

87+088+0

89+
0

90
+0

91+092
+0

93+0

94+0
95+0

96+0
97+0

98
+0

99+0

100+0

101+0

10
2+

0

10
3+

0

104+0

10
5+

0

10
6+

0

10
7+

0

10
8+

0
10

9+
0

11
0+

0

11
1+

0

112+0

11
3+

0

11
4+

0

11
5+

0

11
6+

0

Figure 6: Stationing

The generated lines and labels can be used to produce Postscript maps with ps.map module. An
example of such output is displayed in Figure 6.

9 Use of LRS in project MITRIS

This implementation of LRS we successfully used in the project MITRIS [2]. The objective of the
project MITRIS is the development of complete service for monitoring of road accidents risk. Its first
prototype has been developed on the 3200 km network of Trento Province (Italy).

The database of accidents is updated in two modes. New data are inserted into the database in the
WebGIS interface, which permits the user to georeference the accident interactively on the map or
specify coordinates directly (if measured by GPS). Another possibility is bulk update of the database
in batch mode; the option is used for old data, recorded before the Web interface was available. The
LRS was used to georeference older data sources, where geographic coordinates are missing, but the
road number and measure in the system used by province or state authorities are available. Such
records were automatically georeferenced in batches.

The LRS for MITRIS was generated from the existing layer of state and province roads and the
layer of milestones. The layers are synthesis of the maps digitized on scanned paper map 1:10000
and mapping done with GPS. The distance between digitized milestones is 1 kilometer.

The quality of the data in the LRS can be measured by the difference between the length of the
segment measured in the GIS and the length calculated from two milestones in real world. After
some corrections of roads and reference points we reached the distribution of errors on Figure 7. In
the histogram of errors we can see more segments with error < 0 (i.e. if the length measured in GIS
is shorter than that in real world). This is an expected result, because linear objects are substituted by
polylines in GIS.

A thematic map can be produced for error size attribute and used to increase efficiency of data
corrections. An example of error map is on Figure 8. Only the segments with the errors lower than



Radim Blazek 9

Distribution of errors

Difference between the length of segment measured 
in GIS and the length calculated from milestones in meters.

N
um

be
r 

of
 s

eg
m

en
ts

−150 −100 −50 0 50 100 150

0
10

0
20

0
30

0
40

0
50

0

Figure 7: Distribution of errors

certain limit were used to georeference events. Segments with errors greater than the limit were
excluded from LRS and events falling to those segments were later georeferenced manually.

10 Conclusions

The suggested implementation of LRS in GRASS was proven to be working well with real data.
The system currently supports only static data. The possibility to extend the system to support also
dynamic data must be examined in future. There are at least three possible ways to incorporate
dynamic data:

1. Define a new GRASS format, equivalent of ’native’ and ’ogr’. The format file (’frmt’) would
define LRS map and LRS table, features would be generated dynamically when the map is
opened and the topology and other support data would be always generated dynamical.

2. Add new functions to GRASS Server [3] and use the LRS in PHP Web applications.

3. Store the LRS table in Postgres database, upload LRS map to Postgres database in PostGIS
format and extend Postgres to support LRS in this format. This approach was tested in an
experimental application.

One disadvantage of this implementation of LRS is that the LRS map generated by v.lrs.create
duplicates data. Even if this does not appear to be a problem, it should be considered also a possibility
to use directly the original map, without necessity to generate a new one.

Missing are analytical tools for operations with events, for example overlap of point and linear
events etc. It is however possible to generate new features for events and analyse them by standard
GRASS modules (v.distance, v.overlay).

11 Acknowledgement

The work was partly supported by the WILMA project [1].



10 The GRASS Server

Figure 8: Thematic map of errors

References

[1] WILMA, URL: http://www.wilmaproject.org/

[2] MITRIS, URL: http://mitris.itc.it/

[3] Radim Blazek, Luca Nardelli, 2004, The GRASS Server, Proceedings of the Free/Libre and Open
Source Software for Geoinformatics: GIS-GRASS Users Conference


